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Nonstandard Variational Calculus with
Applications to Classical Mechanics.
2. The Inverse Problem and More

F. Bagarello1

Received September 17, 1998

In this paper we continue analyzing the possible applications of nonstandard
analysis to variational problems, with particular interest in classical mechanics.
In particular, we adapt various techniques of numerical analysis to solve the
nonstandard version of the Euler±Lagrange equation for both one- and
multidimensional systems. We also start an introductory analysis of the inverse
problem of the calculus of variation, identifying a class of nonstandard difference
equations for which a first-order Lagrangian can be obtained.

1. INTRODUCTION

In a previous paper(1) we discussed the possibility of using nonstandard

analysis (NSA) (2,3) to formulate, from the very beginning, the problem of the

calculus of variation. In other words, we used a complete nonstandard

approach to compute the extremum of a given functional J[y] [
* b

a F (x, y, y8) dx satisfying the boundary conditions y(a) 5 A and y(b) 5 B.

We showed how this can be done. The action principle produce a set of ns-
finite algebraic equations whose solution, at least for a large class of models,

differs from the standard one, that is, the one obtained by solving the usual

Euler±Lagrange differential equation related to the functional J[q], for an
infinitesimal quantity. This result was obtained without finding any solution

for the nonstandard equations, but only by using estimates of the differences

between the standard and the nonstandard solutions. The main result in ref.

1 is, in our opinion, the criterion for the existence and the uniqueness of the

solution of a differential equation which no longer makes reference to any
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Lipschitz condition, but only to the estimate of the lower bound of the

determinant of a typically tridiagonal matrix. What was lacking in ref. 1 is,

of course, a technique for finding the explicit solution of a given nonstandard
difference equation. This is the first problem we will solve in this paper, at

least for a class of equations. We will show that many suggestions coming

from numerical analysis can be easily adapted here, and, due to the nature

of NSA, they allow a different way to approach the original problem without

any approximation. In particular we will consider some of the examples

discussed and not solved in ref. 1.
In the second part we will show how to find the extremum of a functional

J depending on n variables,

J[q1, q2, . . . , qn] [ #
tf

ti

L(t, q1, q2, . . . , qn , qÇ 1, qÇ 2, . . . , qÇ n) dt

and with given boundary conditions. Many examples of this problem will

be discussed in details.

In the last section we will discuss some results on the inverse problem

of the calculus of variation. In particular, given some peculiar class of nonstan-

dard difference equations, we will obtain the first-order Lagrangian from
which these equations can be derived.

This paper also contains two appendixes which give information about

the finite difference equations and the standard inverse problem, in order to

keep the paper self-contained.

2. SOLVING THE NONSTANDARD EQUATIONS

In ref.1 we discussed the nonstandard version of the Euler±Lagrange

equation for a functional

J[q] [ #
tf

ti

L(t, q, qÇ ) dt (2.1)

where L(t, q, qÇ ) is a function with all the first and second partial derivatives

continuous and the function q(t) is such that q(ti) 5 qi and q(tf) 5 qf. In

particular we found that the equation

Lq 2
d

dt
Lq

Ç 5 0 (2.2)

in a nonstandard language must be replaced by the following set of D 2 1

equations:
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st F 1

t 1 L 1 tk 2 1, qk 2 1,
qk 1 t 2 qk 2 1

h 2 1 L 1 tk , qk 1 t ,
qk 1 1 2 (qk 1 t )

h 2
2 L 1 tk 2 1, qk 2 1,

qk 2 qk 2 1

h 2 2 L 1 tk , qk ,
qk 1 1 2 qk

h 2 G 5 0,

k 5 1, 2, . . . , D 2 1 (2.3)

We recall that our recipe consists in taking the standard part above, at a first

step, with respect to t and only at a second step also with respect to h .

In ref.1 we focused on some existence results following from the set

(2.3). In particular we showed that it is possible to deduce the existence of

a unique solution of the variational problem simply by computing, or estimat-

ing, the determinant of a tridiagonal matrix. We also discussed many classes
of examples in which the solution of the system (2.3) differs from the standard

solution for an infinitesimal quantity. Nevertheless we have not yet discussed

how to solve the system. In this section we consider in more detail the finite-

difference nature of (2.3), applying to this problem some techniques of this

branch of mathematics. We refer to Appendix A for information related to
the standard difference equations and to some methods of solution.

Let us define the shift operator (of step h ) E h as

E h f (x) [ f (x 1 h ) (2.4)

and the difference operator D h as

D h f (x) [ f (x 1 h ) 2 f (x) (2.5)

so that D h 5 E h 2 1. The function f (x) above belongs to a class of opportunely

regular functions (for instance, differentiable).

In order to show the details of our procedure we consider a first-order

homogeneous differential equation with constant coefficients:

qÇ (t) 1 aq(t) 5 0 with q(ti) 5 qi

Of course this equation cannot be produced by a variational problem, but

since the procedure of discretization is independent of the degree of the

equation, it is still a good starting example.

The standard solution is qs(t) 5 qi e
a(ti 2 t). From Appendix A and from

ref.1 we deduce that the related nonstandard equation can be obtained by

replacing the time derivative dq/dt with D h q/ h . Therefore we get

(E h 1 a h 2 1)q(t) 5 0 with q(ti) 5 qi
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Let us observe that this equation gives the whole set (2.3) when h is replaced

by k h , with k 5 1, 2, . . . , D 2 1. We are going to show that, whenever we

want to find explicitly the solution, it is sufficient to fix k 5 1 and to treat

the equation like a difference equation. In particular, using the results of

Appendix A, we deduce that the solution of the equation above is qns(t) 5
qi (1 2 a h )(ti 2 t)/ h . Incidentally we observe that, since st[(1 2 a h )x/ h ] 5 e 2 ax

for all real x, then the two solutions above belong to the same monad for all

t P R, as we expected.

Before considering more relevant examples, we discuss again the equiva-

lence between the standard and the nonstandard approaches. We have already

touched on this point in ref. 1. Now we would like to perform a deeper

analysis. The point is the following: let y(x) be the (unique) solution of a

given differential equation satisfying certain boundary conditions y(a) 5 a
and y(b) 5 b and let {Yj} be the (unique) solution of the related nonstandard

difference equation with Y0 5 a and Y D 5 b . There is no reason a priori to

be sure that st[y(xj) 2 Yj] 5 0 for all j 5 0,1, . . . , D , even if the nonstandard

difference equation ª convergesº to the standard differential equation when

the standard part is considered. In the case in which this condition is satisfied

we will say that the solutions converge. This peculiarity is widely discussed

in the literature. For instance, in ref. 4 it is discussed that there exist approxi-

mation procedures which do not satisfy the convergence requirement even in

the simple case of initial value problems for first-order differential equations.

Moreover, to our knowledge, there is no general result about this convergence

of the solutions. What can be found in the literature (e.g., refs. 4±6) are only

partial results related to explicit models. In these references the problem is

always seen from a standard point of view, making no use of nonstandard

techniques. Nevertheless most of their results can be translated and used also

in our approach.

The most general of the equations treated in the literature(5,6) is y9 5
f (x, y, y8) with the boundary conditions y(a) 5 a and y(b) 5 b and with the

following conditions on f : 0 , Q
*

# - f/ - y # Q* and ) - f/ - y8 ) # P*. For

this equation, with these hypotheses, in it is shown in ref. 5 that y(xj) 2 Yj

5 O(h2), h being the discretization step. This is much more than what is

needed by our nonstandard approach. In order to verify the convergence of

the solutions it is enough to prove that y(xj) 2 Yj 5 O(hp) for some positive

real p. Below we discuss this kind of estimate for models which are not of

the above form, showing that the solutions ª convergeº and that therefore the

two approaches are equivalent.

We begin with a simple example which already does not fit into the

hypotheses above. Let us consider the second-order differential equation with

real constant coefficients:
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qÈ 1 aqÇ 1 bq 5 0, q(ti) 5 qi , q(tf) 5 qf (2.6)

If b . 0, the above condition on - f/ - y is not satisfied, so that we need a

different estimate to deduce the convergence of the solutions. The nonstandard
version of this equation, obtained as in the previous first-order example, is

(E 2
h 1 E h (a h 2 2) 1 (1 2 a h 1 b h 2))q(t) 5 0 (2.7)

with the same boundary conditions. The discretization of qÈ is given by

D2
h q/ h 2. In Appendix A we show how the general solution of such an equation

can be found. The only difference is that here the discretization step is h
and no longer 1. Depending on the values of a and b, equations (2.6) and

(2.7) admit different solutions, which must be compared with each other. Let
us suppose, for instance, that a2 Þ 4b. Therefore the general solution of the

standard equation, once the boundary conditions are implemented, is

qs(t) 5 c(s)
1 e l 1t 1 c(s)

2 e l 2t

where l 1 5 1±2 ( 2 a 1 ! a2 2 4b), l 2 5 1±2 ( 2 a 2 ! a2 2 4b), and

c(s)
1 5

e l 2tiqf 2 e l 2tfqi

e l 2ti 1 l 1tf 2 e l 1ti 1 l 2tf
, c(s)

2 5
e l 1tfqi 2 e l 1tiqf

e l 2ti 1 l 1tf 2 e l 1ti 1 l 2tf

Under the same hypotheses the solution of the nonstandard equation is instead

qns(t) 5 c(ns)
1 q t/ h

1 1 c(ns)
2 q t/ h

2

where q1 5 1±2 (2 2 a h 1 h ! a2 2 4b), q2 5 1±2 (2 2 a h 2 h ! a2 2 4b), and

c(ns)
1 5

qti / h
2 qf 2 qtf / h

2 qi

qti / h
2 qtf / h

1 2 qti/ h
1 qtf / h

2

, c(ns)
2 5

qtf / h
1 qi 2 qti/ h

1 qf

qti / h
2 qtf / h

1 2 qti / h
1 qtf / h

2

What we want to control now is whether the difference qs(t) 2 qns(t) does

or does not belong to the monad of zero for all t P [ti , tf]. This result is an

easy consequence of the equality st[qt/ h
l ] 5 e l lt for l 5 1, 2. We arrive at the

same conclusion even for a2 5 4b, so that we can safely conclude that the

solution of equation (2.6) is nothing but the standard part of the solution of
equation (2.7).

Let us now consider the nonhomogeneou s equation related to (2.6),

qÈ 1 aqÇ 1 bq 5 F (t), q(ti) 5 qi , q (tf) 5 qf (2.8)

and its nonstandard version

(E 2
h 1 E h (a h 2 2) 1 (1 2 a h 1 b h 2)) q(t) 5 h 2 F (t) (2.9)

with the same boundary conditions. Again it is possible to show that the

nonstandard solution of (2.9) converges to the standard solution of (2.8), at
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least for a wide class of functions F . To prove this fact, we only need to

find a particular solution of the complete equation, since the general solution

of the homogeneous equation has already been found. We stress that no
substantial difficulty arises in the computation of the coefficients c(ns)

k and

c(s)
k when the function F is introduced. Of course, this particular solution

depends on the form of F (t). We now consider some examples:

(i) Let us suppose that F (t) 5 kht. The standard particular solution is

q(par)
s (t) 5 kht/(log2 h 1 a log h 1 b), while the nonstandard solution is easily

obtained, following the suggestions of Appendix A, and has the form

q(par)
ns (t) 5

kht

((h h 2 1)/ h )2 1 a((h h 2 1)/ h ) 1 b

Again, observing that st[(h h 2 1)/ h ] 5 log h, we deduce that st[q(par)
ns (t) 2

q(par)
s (t)] 5 0 for all t P [ti , tf], so that the general solutions of the complete

equations also belong to the same monad.

(ii) Let F (t) be a polynomial of degree n. Then the particular solutions
of both (2.8) and (2.9) can be found as a polynomial of the same degree,

which certainly exist if b Þ 0. These two solutions can be shown to converge

to each other using some easy estimates on matrices and their determinants.

It is possible in this way to prove that the difference between the two solutions

is O( h ). The same steps can be used even if F (t) is a polynomial times an

exponential ht. Obviously, in this case, the solution also must be sought as
a polynomial times the same exponential. We notice that item (i) fits into

this more general situation.

(iii) If F (t) is a trigonometric function, eventually multiplied by a factor

ht, the result follows from point (i).

Let us now move to homogeneous equations of higher degree with

constant coefficients. We first define two operators

L(s) 5 o
n

k 5 0
ak

d n 2 k

dt n 2 k , L(ns) 5 o
n

k 5 0
ak

(E h 2 1)n 2 k

h n 2 k (2.10)

where a0 5 1. With this definition a homogeneous differential equation of

degree n can be written as

L(s)q(t) 5 0 (2.11)

while

L(ns)q(t) 5 0 (2.12)

is its nonstandard counterpart. We know that the n independent solutions of

the differential equation are obtained by the m ( # n) solutions of its related

algebraic equation
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o
n

k 5 0

ak l n 2 k 5 0 (2.13)

which is the same equation that gives the n independent solutions of the

difference equation. We recall that if, for instance, l 1 is a root of (2.13) with

multiplicity one, then e l 1t and (1 1 h l 1)
t/ h are respectively solutions of

equations (2.11) and (2.12). We observe also that st[(1 1 h l 1)
t/ h ] 5 e l 1t.

Similar conclusions can be obtained if the multiplicity of l 1 is bigger than

one. We can state the following result:

x Given the standard homogeneous differential equation and its nonstan-
dard counterpart in (2.11) and (2.12), there exist a standard fundamental

system of solutions {q( j)
s (t)} and a corresponding nonstandard fundamental

system of solutions {q( j)
ns (t)}, j 5 1, . . . , n, such that st ) q( j)

s (t) 2 q( j)
ns (t) ) 5

0 for all j 5 1, . . . , n and for all t P [ti , tf].

Up to this point we have not yet introduced the boundary conditions.

If n is even, as surely happens if the equation follows from a variational

principle,(7) we can fix the n boundary conditions on q(t) and its successive

derivatives up to the order n/2. These conditions should be sufficient to fix

the coefficients both in qs(t) 5 ( n
i 5 1 c(s)

i q(i)
s (t) and in qns(t) 5 ( n

i 5 1 c(ns)
i q(i)

ns(t),
where {q(i)

s } and {q(i)
ns} are just the fundamental solutions introduced above.

In order to conclude that qns(t) ’ qs(t) for any time, it suffices to show now

that c(ns)
i (t) ’ c(s)

i (t) for all i 5 1, . . . , n. This is actually true and can be

shown using techniques analogous to the ones used for the homogeneous

equations (2.6) and (2.7).

The same results can also be extended to nonhomogeneous equations.
The convergence of the solutions is easily proved for nonhomogeneous just

as for the ones discussed for a second-order equation, with very similar

techniques.

Many other differential equations are under control as far as the conver-

gence of the solutions is concerned. We do not discuss these other examples

here since they are related to initial value problems more than to boundary
condition problems. Therefore their relation to a variational approach is not

so evident. In particular nth-order-differential equations in normal form could

be discussed. We plan to come back to this subject in the near future.

We conclude this section by showing how two of the examples consid-

ered in ref. 1 can be explicitly solved using the procedure proposed in
this section.

The first example is given by the differential equation qÈ (t) 5 1, with

the boundary conditions q(0) 5 q(1) 5 0. Its standard solution is qs(t) 5
(t2 2 t)/2. The nonstandard version of qÈ (t) 5 1 is obviously (E 2

h 2 2E h 1
1)q 5 h 2. The general solution of the homogeneous equation is q(h)

ns (t) 5
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c1 1 c2t, while t2/2 is a particular solution of the complete equation. Fixing

the above boundary conditions, we obtain the solution qns(t) 5 (t2 2 t)/2.

Therefore the standard and nonstandard solutions coincide!
The situation is different for the second example, qÈ 5 q 1 t, with

boundary conditions q(0) 5 q(1) 5 0, whose standard solution is qs(t) 5
(et 2 e 2 t)/(e 2 e 2 1) 2 t. The nonstandard equation is now (E 2

h 2 2E h 1
(1 2 h 2))q 5 t h 2. Using the same boundary conditions, we obtain now

qns(t) 5
(1 1 h )t/ h 2 (1 2 h )t/ h

(1 1 h )1/ h 2 (1 2 h )1/ h 2 t

Recalling that st[(1 6 h )t/ h ] 5 e 6 t " t P R, we can easily verify that

st[qs(t) 2 qns(t)] 5 0 " t P R.

3. THE EULER± LAGRANGE EQUATIONS IN SEVERAL
VARIABLES

In this section we will obtain the analog of the system (2.3) for a

functional J depending on more variables.
Let us consider a function L(t, q1, q2, . . . , qn , qÇ 1, qÇ 2, . . . , qÇ n), with all

the first and second partial derivatives continuous. We define the functional

J[q1, q2, . . . , qn] [ #
tf

ti

L(t, q1, q2, . . . , qn , qÇ 1, qÇ 2, . . . , qÇ n) dt (3.1)

The obvious generalization of the variational problem in one dimension

consists now in obtaining the set of functions (q1(t), q2(t), . . . , qn(t)), satisfying
the following boundary conditions:

qk(ti) 5 qi,k , qk(tf) 5 qf,k, k 5 1, 2, . . . , n

which are extrema of the functional J. In this case it is quite easy to generalize

the results of ref. 1. With the very same steps and considerations as in ref.

1 we obtain the following set of n times D 2 1 equations:

st F 1

t 1 L 1 tk 2 1, q a ,k 2 1,
q a ,k 1 t 2 q a ,k 2 1

h 2 1 L 1 tk , q a ,k 1 t ,
q a ,k 1 1 2 (q a ,k 1 t )

h 2
2 L 1 tk 2 1, q a ,k 2 1,

q a ,k 2 q a ,k 2 1

h 2 2 L 1 tk , q a ,k,
q a ,k 1 1 2 q a ,k

h 2 2 G 5 0

k 5 1, 2, . . . , D 2 1, a 5 1, 2, . . . , n (3.2)

The rule for dealing with these equations is the same we already used for

the one-dimensional case: we first take the standard part with respect to t



Nonstandard Variational Calculus. 2 1601

and only after obtaining the solution do we do this also with respect to h .

Of course these equations are the nonstandard analogs of the well-known set

of n differential equations

Lq a 2
d

dt
LqÇ a 5 0 , a 5 1, 2, . . . , n (3.3)

We now consider some examples.

Example 1. L(r(t), u (t), rÇ (t), u Ç (t)) 5 1±2 m(rÇ (t)2 1 r(t)2 u Ç (t)2) 2 1±2 k(r(t) 2
r)2 1 mgr(t) cos u (t).

This first example describes a particle with mass m free to move in a

vertical plane, and fixed to the origin of the plane by means of an elastic

string. Therefore this particle is subject to gravity and to the quadratic force

of the string expressed by Hooke’ s law. Here r is the equilibrium position

of the elastic string. We will not discuss the explicit solution of the system
(3.2) since even its standard counterpart is hard to manage. We will focus

our attention only on the relations between the standard and the nonstandard

approaches. The classical Euler±Lagrange equations are

mrÈ 5 mr u Ç 2 2 k(r 2 r) 1 mg cos u

2rrÇ u Ç 1 r 2 u È 5 2 gr sin u

From algebraic calculations we get

L 1 rk 2 1, u k 2 1,
rk 1 t 2 rk 2 1

h
,
u k 2 u k 2 1

h 2 2 L 1 rk 2 1, u k 2 1,
rk 2 rk 2 1

h
,
u k 2 u k 2 1

h 2
5

1

2
m F t 2

h 2 1 2
t
h 2 (rk 2 rk 2 1) G

and

L 1 rk 1 t , u k ,
rk 1 1 2 rk 2 t

h
,
u k 1 1 2 u k

h 2 2 L 1 rk , u k ,
rk 1 1 2 rk

h
,
u k 1 1 2 u k

h 2
5

1

2
m F t 2

h 2 2 2
t
h 2 (rk 1 1 2 rk) 1 ( t 2 1 2 t rk) 1 u k 1 1 2 u k

h 2
2 G

2
1

2
k t 2 2 k t (rk 2 r) 1 mg t cos u k
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Therefore the first equation can be written as

m
2rk 2 rk 2 1 2 rk 1 1

h 2 1 mrk 1 u k 1 1 2 u k

h 2
2

2 k(rk 2 r) 1 mg cos u k ’ 0

With similar calculations we get the second equation in the following form:

r 2
k

2 u k 2 u k 2 1 2 u k 1 1

h 2 2 2rk

u k 1 1 2 u k

h

rk 1 1 2 rk

h
2 grk sin u k ’ 0

In obtaining this equation we have taken advantage of the fact that, since by

hypothesis r(t) is a twice differentiable function, rk , rk 2 1, and rk 1 1 all belong

to the same monad for all k.

We observe that, as expected, the nonstandard equations are the discret-

ized versions of the standard ones. This is in agreement with Proposition 2

of ref. 1, which also can be restated for this multidimensional situation:

without going into details, which are indeed very similar to those in ref. 1,

we can say that the system (3.2) is the discretized version of the standard

system (3.3). Therefore, we may say that the discretization procedure com-
mutes with the procedure of finding the variation of the functional J[q1, q2,

. . . , qn]. This means that the two procedures (a) and (b) described below

give equations which, at most, differ for infinitesimal quantities:

(a1) Compute d J and put d J 5 0. This gives the standard Euler±

Lagrange equations.

(a2) Discretize the system obtained in point (a1) using an infinitesimal

time step h .

(b1) Discretize the functional J[q1, q2, . . ., qn] by means of an infinitesi-

mal time step h .

(b2) Compute the variation of the discretized functional J, and assume

that this quantity is infinitesimal. This gives back the system (3.2).

Example 2. L(q1(t), q2(t), qÇ 1(t), qÇ 2(t)) 5 qÇ 21(t) 1 qÇ 22(t) 1 2q1(t) 1 2q2(t).

This example is really extremely simple since the Lagrangian is obvi-

ously a sum of two one-body contributions and there is no ª interactionº

between particle 1 and particle 2. Let us fix the following boundary conditions:

q a (0) 5 q a (1) 5 0 , a 5 1, 2

The standard solution is q1(t) 5 q2(t) 5 1±2 (t 2 2 t). We will see in a moment

that the same solution is found using the nonstandard equations (3.2).
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With some algebraic computation we obtain

L 1 q1,k 2 1, q2, k 2 1,
q1,k 1 t 2 q1,k 2 1

h
,

q2, k 2 q2,k 2 1

h 2
2 L 1 q1, k 2 1, q2,k 2 1,

q1, k 2 q1,k 2 1

h
,

q2, k 2 q2,k 2 1

h 2
5

t 2

h 2 1 2
t
h 2 (q1,k 2 q1, k 2 1)

and

L 1 q1, k 1 t , q2,k,
q1,k 1 1 2 q1,k 2 t

h
,

q2,k 1 1 2 q2, k

h 2
2 L 1 q1,k, q2, k,

q1,k 1 1 2 q1, k

h
,

q2,k 1 1 2 q2, k

h 2
5

t 2

h 2 2 2
t
h 2 (q1,k 1 1 2 q1,k) 1 2 t

so that, after taking the standard part with respect to t , the first equation

becomes

2q1,k 2 q1, k 2 1 2 q1,k 1 1 5 2 h 2, 1 # k # D 2 1 (3.4)

This coincides with the nonstandard equation found in Example 1 of ref. 1

for the single variable qk , and it is, as discussed in that reference, the discret-
ized version of the standard differential equation.

Due to the symmetry q1 % q2 of the Lagrangian an equation analogous

to (3.4) is obtained for q2(t). The solution of this equation is discussed in

the previous section. We see that, considering the boundary conditions above,

the solution coincides with the standard one for all t P [0, 1].

Example 3. L(q1(t), q2(t), qÇ 1(t), qÇ 2(t)) 5 1±2 m(qÇ 21(t) 1 qÇ 22(t)) 2 U(q1(t) 2
q2(t)).

This is actually a family of examples, depending on the explicit form
of the potential U. It describes two particles with the same mass ª livingº in

one spatial dimension which interact with each other by means of a force

depending only on the mutual distance.

If we call Ux(x) [ dU(x)/dx, we can write the standard equations as

mqÈ 1 5 2 Ux(q1 2 q2)

mqÈ 2 5 Ux(q1 2 q2)
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These equations are particularly easy to manage since they can be easily

decoupled simply by defining two new independent variables X 6 [ q1 6 q2.

In this way we get

XÈ + 5 0

XÈ 2 5 2
2

m
Ux(X

2 ) (3.5)

On the other hand the nonstandard equations obtained by (3.2) are

m
2q1,k 2 q1,k 2 1 2 q1,k 1 1

h 2 ’ Ux(q1,k 2 q2,k)

m
2q2,k 2 q2,k 2 1 2 q2,k 1 1

h 2 ’ 2 Ux(q1,k 2 q2, k)

Again it is possible to decouple these equations: let us define X 6
k [ q1,k 6

q2,k for all k. We obtain

2X 1
k 2 X 1

k 2 1 2 X 1
k 1 1 ’ 0

2X 2
k 2 X 2

k 2 1 2 X 2
k 1 1 ’

2 h 2

m
Ux(X

2
k ) (3.6)

which are, of course, just the nonstandard version of (3.5).
Until we fix the form of the potential, we cannot say anything more.

We now consider two different choices of U and see what happens.

Example 3A. U (q1 2 q2) 5 1±2 (q1 2 q2)
2.

With this choice of potential the nontrivial equation in (3.5) becomes

the equation of a harmonic oscillator XÈ 2 1 v 2X 2 5 0, where v 5 2k/m.

We fix the following boundary conditions: q1(0) 5 q2(0) 5 0 and

q1(1) 5 q2(1) 5 1. We must use care in fixing the boundary conditions if

we want to obtain a unique solution of the variational problem (as usually

happens when we deal with harmonic oscillators).
The standard equations for X + and X 2 are easily solved and, once the

boundary conditions above are implemented, we get the unique solution

q1(t) 5 q2(t) 5 t.
It may be interesting to observe that the different set of boundary condi-

tions q1(0) 5 q2(0) 5 0 and q1( p / v ) 5 q2( p / v ) 5 0 would give instead the

infinite set of solutions q1(t) 5 2 q2(t) 5 D sin t, where D is an arbitrary
constant.

Let us now consider the nonstandard approach. It can be deduced from

the results contained in the previous section that equation (3.6) for the variable

X 1
k has the solution X +(t) 5 A 1 Bt, where A and B are arbitrary constants
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to be fixed by the boundary conditions. In fact, introducing the shift operator,

we can rewrite this equation as (E 2
h 2 2E h 1 1)X 1

k 2 1 5 0, which coincides

with equation (2.7) with a 5 b 5 0. The equation for X 2
k , 2X 2

k 2 X 2
k 2 1 2

X 2
k 1 1 ’ v 2 h 2X 2

k , is solved by X 2 (t) 5 Cst/ h
1 1 Dst/ h

2 , where again C and D
are constants and

s1,2 [
2 2 v 2 h 2 6 v h ! v 2 h 2 2 4

2
.

First of all it is interesting to observe that st[st/ h
1 ] 5 ei v t and st[st/ h

2 ] 5
e 2 i v t, so that the general solution strongly resembles the standard one. Further-

more, once the boundary conditions q1(0) 5 q2(0) 5 0 and q1(1) 5
q2(1) 5 1 are fixed, and once the standard part of the complete solution is

taken, we obtain back exactly the standard solution.

Example 3B. U(q1 2 q2) 5 2 (q1 2 q2)
3{1 1 (q1 2 q2)}.

This is a second example fitting in the class of Example 3, and again

it can be exactly solved.

The first equation in (3.5) gives the usual free solution X +(t) 5 A 1
Bt, while the second one, XÈ 2 5 3(X 2 )2 1 4(X 2 )3, is a bit more difficult and
can be solved by introducing a new variable Z(X ) [ XÇ 2 (t). We have put

m 5 2 for simplicity of notation. Fixing the initial conditions q1(0) 5
qÇ 1(0) 5 qÇ 2(0) 5 0 and q2(0) 5 1, we get the solutions q1(t) 5 1/2 1
1/(t2 2 2) and q2(t) 5 1/2 2 1/(t2 2 2).

Let us consider the nonstandard approach. For the same m 5 2 the

system (3.6) can be rewritten as

2X 1
k 2 X 1

k 2 1 2 X 1
k 1 1 ’ 0

2X 2
k 2 X 2

k 2 1 2 X 2
k 1 1 ’ 2 h 2(3(X 2

k )2 1 4(X 2
k )3)

The first equation is the usual free particle equation, whose solution is
X +(t) 5 A 1 Bt, while the second is nonlinear and can be solved by defining

a new set of variables Zk [ (X 2
k 1 1 2 X 2

k )/ h . In these new variables the equa-

tion can be rewritten as (Zk 1 1 2 Zk)Zk ’ (3(X 2
k )2 1 4(X 2

k )3)(X 2
k 1 1 2 X 2

k ),

whose solution is 1±2 Z2
k 5 (X 2

k )3 1 (X 2
k )4, as is easily verified. This last equa-

tion can be further managed and it gives the solution X 2 (t) 5 2/(t2 2 2).
Fixing the same initial conditions as in the standard situation, we obtain

again the same solutions as before.

4. THE INVERSE PROBLEM: A FIRST APPROACH

We devote this section to a first approach to the inverse problem of the

calculus of variation. The standard inverse problem is concerned with the
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possibility of finding a Lagrangian L which, by means of the Euler±Lagrange

equations (3.3), returns a given set of differential equations. In the nonstandard

version of this problem we simply replace the set (3.3) with its nonstandard
counterpart (3.2). We will not consider the general situation, which is quite

difficult solve, but only models for which a solution can be easily found.

These models will be chosen also for their physical relevance; indeed they

describe classical equations of motion for point particles. We will also obtain

a no-go result. We refer to Appendix B for a brief resume of the standard

approach to the inverse problem.
Let us consider the following system of first-order nonstandard differ-

ence equations:

5
q1, k 1 1 2 q1,k ’ h f 1(q1, k, q2,k, . . . , qn,k, tk)

q2,k 1 1 2 q2,k ’ h f 2(q1,k, q2,k, . . . , qn,k, tk)

. . .

. . .

qn,k 1 1 2 qn,k ’ h f n(q1,k, q2,k, . . . , qn,k, tk)

(4.1)

which is the nonstandard version of system (B.1) in Appendix B. Here h is
an infinitesimal. In Appendix B we discuss some results related to the standard

approach. In this section we will discuss the analogs of those results in the

nonstandard approach.

First we recall that any nth-order difference equation can be rewritten

in this form simply by introducing new variables exactly in the same way

as we do for an nth-order differential equation.
We start by discussing the existence of a first-order Lagrangian

L(q1, . . . , qn , qÇ 1, . . . , qÇ n , t) 5 o
n

a 5 1

qÇ a f a (q1, . . . , qn , t)

1 f0(q1, . . . , qn , t) (4.2)

which, together with the system (3.2), returns system (4.1). The details are

long and not so interesting and therefore will be omitted. Assuming that all
the functions f b are twice differentiable, it is a straightforward exercise to

obtain the nonstandard version of equation (B.4). Defining

M k
a , b [

f a (q1, k, . . . , q b ,k 1 1, . . . , qn,k, tk) 2 f a (q1,k, . . . , q b ,k, . . . , qn,k, tk)

q b ,k 1 1 2 q b ,k

2
f b (q1,k, . . . , q a ,k 1 t , . . . , qn,k, tk) 2 f b (q1,k, . . . , q a ,k, . . . , qn,k, tk)

t
(4.3)
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and

F k
a (q1,k, . . . , q a ,k, . . . , qn,k, tk , t , h )

[ 2
f a (q1,k, . . . , qn,k, tk 1 1) 2 f a (q1, k, . . . , qn,k, tk)

h

1
f0(q1, k, . . . , q a ,k 1 t , . . . , qn,k, tk) 2 f0(q1,k, . . . , q a ,k, . . . , qn,k, tk)

t
(4.4)

then the functions f b in the Lagrangian must be taken to be any set of solutions

of the system

o
n

b 5 1

M k
a b f b 5 F k

a , a 5 1, 2, . . . , n , k 5 0, 1, 2, . . . , D 2 1

(4.5)

Before considering some examples in which the Lagrangian can be

found, we state the announced no-go result. If n is an odd integer, then it is

easy to see that the skew-symmetric matrix M k, with matrix elements M k
a b ,

is singular for any k. It is therefore not possible to invert the system (4.5)

in order to return to the original system (4.1). The situation changes drastically
if n is an even integer, since a skew-symmetric matrix with an even number

of rows and columns may have, in general, a nonzero determinant. This result

is in agreement with its known standard version: in both cases, for odd n,

there exists no first-order Lagrangian solving the inverse problem.

Now we analyze in some detail the nonstandard version of the results

discussed in Appendix B for the easiest nontrivial situation: n 5 2. This is
not a useless task since, as is well known, (almost) any equation of motion

of a single classical particle can be rewritten in this form. The system we

will deal with is therefore

5
q1, k 1 1 2 q1,k

h
’ f 1(q1, k, q2,k)

q2,k 1 1 2 q2,k

h
’ f 2(q1,k, q2,k)

(4.6)

where the functions on the right-hand sides are now supposed to be time

independent, and the tentative Lagrangian is therefore

L(q1, q2, qÇ 1, qÇ 2) 5 qÇ 1 f1(q1, q2) 1 qÇ 2 f2(q1, q2) 1 f0(q1, q2) (4.7)

Let us notice that, due to time independence of the f a , even the first-order
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Lagrangian can be sought with no explicit dependence on t. The system (4.5)

reduces now to the two equations

H M k
1,2 f 2(q1,k, q2, k) ’ F k

1

M k
2,1 f 1(q1,k, q2, k) ’ F k

2
(4.8)

where M k
1,2 ’ 2 M k

2,1 and F k
a are defined in (4.4), but do not depend explicitly

on t.
We now consider different classes fixed by particular choices of the

functions f a , the same ones discussed in Appendix B from a standard point

of view. We will show that in these situations the system (4.8) can be solved

and the functions f a give rise to the same Lagrangian as in the standard

situation.

Condition 1. f 1(q1, q2) 5 f 1(q2), f 2(q1, q2) 5 f 2(q1).

If we put f1(q1, q2) 5 q2 and f2(q1, q2) 5 0, from the definition of

M k
1,2 it follows that M k

1,2 5 1 5 2 M k
2,1, so that the system (4.8) takes the form

H 1 f 2(q1,k) ’ F k
1

2 1 f 1(q2,k) ’ F k
2

From the definition of F k
a it immediately follows that f0(q1, q2) 5 * f 2(q1)

dq1 2 * f 1(q2) dq2, so the Lagrangian coincides with the one given in

Appendix B.

A simple example of this situation is given by the following system:

5
q1,k 1 1 2 q1,k

h
’ q2

2,k

q2,k 1 1 2 q2,k

h
’ q1, k 1 1

Due to the above results, it is immediate to find the Lagrangian for this set

of nonstandard equations: L(q1, q2, qÇ 1, qÇ 2) 5 qÇ 1q2 1 1±2 q2
1 1 q1 2 1±3 q3

2. We

can verify the rightness of this result simply by substituting this Lagrangian
in equation (3.2).

Condition 2. f 1(q1, q2) 5 q2, f 2(q1, q2) 5 f 2(q1).

This is actually a particular situation of the previous case. We prefer to
consider this situation separately since it describes the well-known standard

equation of motion xÈ 5 f (x). Of course the solution for the functions f b
directly follows from the results above: f1(q1, q2) 5 q2, f2(q1, q2) 5 0, and

f0(q1, q2) 5 * f 2(q1) dq1 2 q2
2 /2.
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Let us now consider a simple example. We consider the following system:

5
q1,k 1 1 2 q1,k

h
’ q2,k

q2, k 1 1 2 q2,k

h
’ 2 q1,k

This is the nonstandard version of the well-known differential equation xÈ 5
2 x. Using the above definition, we find the expression of our Lagrangian:
L(q1, q2, qÇ 1, qÇ 2) 5 qÇ 1 q2 2 1±2 (q2

1 1 q2
2). Again, if we use this Lagrangian in

(3.2), we obtain the above system.

Condition 3. f 1(q1, q2) 5 q2, f 2(q1, q2) 5 f 2(q2).

This is a classical equation of motion of the following type: xÈ 5 f(xÇ );
therefore it describes a one-dimensional particle subjected to a given friction.
Again we put f2(q1, q2) 5 0 and f1(q1, q2) 5 2 * dq2/ f 2 (q2). In this way

the system (4.8) takes the form

5
2 1

f 2(q2,k)
f 2(q2, k) ’ Fk

1

1

f 2(q2,k)
q2, k ’ F k

2

which is solved by

f0(q1, q2) 5 2 q1 1 # q2 dq2

f 2(q2)

An example of this situation is given by

5
q1, k 1 1 2 q1,k

h
’ q2, k

q2, k 1 1 2 q2,k

h
’ q2

2,k

Using the above results, we deduce the following form for the Lagrangian:

L(q1, q2, qÇ 1, qÇ 2) 5 qÇ 1/q2 2 q1 1 log ) q2 ) . Again, it is a simple exercise to

obtain the above system from this Lagrangian by means of equations (3.2).

Condition 4. f 1(q1, q2) 5 q2, f 2(q1, q2) 5 F (q1) C (q2).

This situation describes a classical equation of motion of the type xÈ 5
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F (x) C (xÇ ). This time it is convenient to put f1(q1, q2) 5 0 and f2(q1, q2) 5
q1/ C (q2). In this way the system (4.8) becomes

5
2 1

C (q2,k)
F (q1,k) C (q2, k) ’ F k

1

1

C (q2, k)
q2,k ’ F k

2

which is solved by

f0(q1, q2) 5 2 # F (q1) dq1 1 # q2 dq2

C (q2)

An example is given by the following system of nonstandard equations

5
q1,k 1 1 2 q1, k

h
’ q2,k

q2,k 1 1 2 q2, k

h
’ q2

1,k q2, k

In this example the above definitions return L(q1, q2, qÇ 1, qÇ 2) 5 (qÇ 2/q2)q1 1
q2 2 q3

1 /3.

Condition 5. f 1(q1, q2) 5 f 1(q1), f 2(q1, q2) 5 f 2(q2).

This situation does not describe a second-order equation of motion, but

rather two decoupled equations qÇ 1 5 f 1(q1) and qÇ 2 5 f 2(q2). Due to the no-
go result discussed in this section we know that it is not possible to find a

first-order Lagrangian returning this set of equations as a sum of two contribu-

tions each depending on only one variable. Nevertheless a solution can be

found when q1 and q2 are considered, in a sense, as coupled variables. Let

us put

f1(q1, q2) 5
1

f 1(q1) # dq2

f 2(q2)
and f2 (q1, q2) 5 0

The system (4.8) now can be rewritten as

5
1

f 1(q1,k) f 2(q2, k)
f 2(q2,k) ’ F k

1

2 1

f 1(q1,k) f 2(q2, k)
f 1(q1,k) ’ F k

2
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which is immediately seen to be solved by

f0(q1, q2) 5 # dq1

f 1(q1)
2 # dq2

f 2(q2)

An example is given by the system

5
q1,k 1 1 2 q1,k

h
’ q1,k 1 1

q2,k 1 1 2 q2,k

h
’

1

q2, k

The Lagrangian is now

L(q1, q2, qÇ 1, qÇ 2) 5
qÇ 1q

2
2

2(q1 1 1)
1 log ) q1 1 1 ) 2

q2
2

2

All the above integrals, which are assumed to exist, must be understood

in the nonstandard sense.

We have considered here five classes of difference equations for which

it is simple to find a first-order Lagrangian. Different classes can also be

treated; we will consider these generalizations in a future paper.
We also wish to use NSA to discuss the variational principle in quan-

tum mechanics:

d ^ C ,H C & 5 0

where C is the wave function and H is the hamiltonian of the system. We

expect to obtain, with some appropriate procedure, the nonstandard analog

of the SchroÈ dinger equation. Further generalizations will hopefully produce

also the nonstandard relativistic (Dirac or Klein±Gordon) equations of motion.

APPENDIX A. SOLUTIONS OF SOME STANDARD
DIFFERENCE EQUATIONS

In this appendix, included here for completeness, we will briefly summa-

rize some techniques of solution of some particular difference equations. We
refer to ref. 8 for a simple but detailed analysis.

Let E be the shift operator acting on regular functions in the canonical

way: Eu(x) [ u(x 1 1).

For a general homogeneous linear equation of order n with real constant

coefficients of the form

L(E )u(x) [ (b0E
n 1 b1E

n 2 1 1 . . . 1 bn)u(x) 5 0 (A.1)

the solution must be sought in the form u(x) 5 Cemx, where C is a constant
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and m is fixed by the equation. Calling q [ em, the equation becomes

b0q
n 1 b1q

n 2 1 1 . . . 1 bn 5 0, which gives three different situations,

depending on the solutions q a of the equation:

(i) The n roots are all different. In this case the general solution of

equation (A.1) is u(x) 5 C1q
x
1 1 C2q

x
2 1 . . . . 1 Cnq

x
n, where the Cn are

arbitrary constants.

(ii) Let us suppose that one root, q1, is complex. Therefore, if the
coefficients b a are real, also q2 [ q1 is a solution of the equation. The general

solution of (A.1) is now u(x) 5 C1q
x
1 1 C2q

x
1 1 . . . . 1 Cnq

x
n.

(iii) The third situation appears, for instance, when all the roots but two

are real and distinct while q1 5 q2. In this case the general solution is

u(x) 5 C1q
x
1 1 C2xq x

1 1 . . . . 1 Cnq
x
n.

If the equation is not homogeneous, we have to add to the general solution

of (A.1) a particular solution of the complete equation. As we can see the

theory (and practice) of difference equations strongly resembles the theory

of ordinary differential equations.
A particular solution of the complete equation

L(E )u(x) 5 F (x) (A.2)

can be very easily found for particular examples of the function F (x). For

instance, if F (x) 5 ax, then a particular solution is up(x) 5 [1/L(a)]ax whenever

L(a) Þ 0. Of course, due to the linearity of the operator L, it is very easy to

find a particular solution even if we have F (x) 5 cos( a x) or F (x) 5 sin( a x).

Moreover, following common sense, when F (x) is a polynomial of degree
m, Pm(x), we look for a particular solution of (A.2) as a polynomial of the

same degree, Qm(x). Still, if F (x) 5 b xPm(x), then we have up(x) 5 b xQm(x).

And yet, for F (x) 5 b xsin( a x) or F (x) 5 b xcos( a x), we search for a solution

of the form up(x) 5 b x(A cos( a x) 1 B sin( a x)). More information, techniques,

and tricks can be found in ref. 8 and other textbooks of numerical analysis.

APPENDIX B. STANDARD INVERSE CALCULUS

This appendix is devoted to giving some information about the standard

inverse calculus of variation, information translated in Section 4 into our
nonstandard language. We do not plan to give a general overview of this

subject, which is widely discussed in the literature (see, e.g., refs. 9±11

and references therein). Let us consider the following system of first-order

differential equations:
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5
xÇ 1 5 f 1(x1, x2, . . . , xn , t)

xÇ 2 5 f 2(x1, x2, . . . , xn , t)

. . .

. . .

xÇ n 5 f n(x1, x2, . . . , xn , t)

(B.1)

It is well known that any differential equation of order n can be rewritten in

this form by simply introducing new variables. It is discussed in the literature
that not all the systems like (B.1) can be obtained by a quadratic Lagrangian.(11)

Let us therefore consider a first-order Lagrangian for such a system,

L(x1, . . . , xn , xÇ 1, . . . , xÇ n ,t) 5 o
n

a 5 1

xÇ a f a (x1, . . . , xn , t)

1 f0(x1, . . . , xn , t) (B.2)

where all the functions f b do not depend on xÇ j. Using the standard Euler±

Lagrange equations (3.3), we obtain a certain number of constraints for the

functions f b . These are necessary conditions for the Lagrangian in (B.2) to

give back the set (B.1). Defining

M a b [
- f a

- x b
2

- f b

- x a
, F a [

- f0

- x a
2

- f a

- t
(B.3)

it is easy to see that the following set of n equations must be satisfied:

o
n

b 5 1

M a b f b 5 F a , a 5 1, 2, . . . , n (B.4)

A first interesting consequence of this constraint is that, if n is an odd integer,
then there does not exist any first-order Lagrangian for the system (B.1).

The reason is simply that the skew-symmetric matrix M is necessarily singular

if the number of the rows is odd.

The situation is different if n is an even integer, since in this case in

general we have det M Þ 0. In ref. 9 it is discussed that, once f0 is fixed,
there surely exists a solution f a of the system (B.4). In this paper we have

focused on second-order differential equations since they have a particular

relevance in classical mechanics. We consider therefore the following particu-

lar form of the system (B.1):

H xÇ 1 5 f 1(x1, x2, t)

xÇ 2 5 f 2(x1, x2, t)
(B.5)

We list here some particular situations in which the functions f0, f1, f2 can
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be easily found. It is very simple to verify this result and we will not do it

here. We assume that all the quantities below are assumed to be well defined.

1. f 1(x1, x2, t) 5 f 1(x2), f 2(x1, x2, t) 5 f 2(x1) Þ

L(x1, x2, xÇ 1, xÇ 2, t) 5 xÇ 1x2 1 # f 2(x1) dx1 2 # f 1(x2) dx2

2. f 1(x1, x2, t) 5 f 1(x1), f 2(x1, x2, t) 5 f 2(x2) Þ

L(x1, x2, xÇ 1, xÇ 2, t) 5 xÇ 1
1

f 1(x1) # dx2

f 2(x2)
1 # dx1

f 1(x1)
2 # dx2

f 2(x2)

3. f 1(x1, x2, t) 5 x2, f 2(x1, x2, t) 5 f 2(x1) Þ

L(x1, x2, xÇ 1, xÇ 2, t) 5 xÇ 1x2 1 # f 2(x1) dx1 2
x2

2

2

4. f 1(x1, x2, t) 5 x2, f 2(x1, x2, t) 5 f 2(x2) Þ

L(x1, x2, xÇ 1, xÇ 2, t) 5 xÇ 1 # dx2

f 2(x2)
1 # x2 dx2

f 2(x2)
2 x1

5. f 1(x1, x2, t) 5 x2, f 2(x1, x2, t) 5 F (x1) C (x2) Þ

L(x1, x2, xÇ 1, xÇ 2, t) 5
xÇ 2x1

C (x2)
2 # f (x1) dx1 1 # x2dx2

C (x2)

We make some brief remarks before concluding:

(i) Situation 2 describes two decoupled equations.

(ii) Situations 3±5 describe three different examples of classical equa-

tions of motion, so that they have a direct physical interpretation.
(iii) Whenever the functions f a do not depend explicitly on t, even the

functions f a may be chosen to be time independent.
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